Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Design, synthesis and biological activities of 5H-dibenzo[b,f]azepine-5-carboxamide derivatives; Targeted hippocampal trypsin inhibition as a novel approach to treat epileptogenesis

Taha` Iqbal, Mohsin Abbas Khan, Irshad Ahmad , Fahad Mehmood Khan

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Pakistan;

For correspondence:-  Irshad Ahmad   Email: drirshad.iub@gmail.com   Tel:+923006800703

Accepted: 5 February 2022        Published: 28 February 2021

Citation: Iqbal T, Khan MA, Ahmad I, Khan FM. Design, synthesis and biological activities of 5H-dibenzo[b,f]azepine-5-carboxamide derivatives; Targeted hippocampal trypsin inhibition as a novel approach to treat epileptogenesis. Trop J Pharm Res 2022; 21(2):303-312 doi: 10.4314/tjpr.v21i2.13

© 2022 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To synthesize anticonvulsant drug derivatives that target protease-activated receptor generated epileptic seizures.
Method: Varieties of carbamazepine-based Schiff bases were designed with different aldehydes and ketones, and evaluated for in silico computer-aided drug design prediction of absorption, distribution, metabolism and excretion (ADME), and potential drug targets. The resultant compounds were synthesized and characterized by various spectroscopic techniques, including FTIR, 1H-NMR and 13C-NMR, analysis. Thereafter, they were screened for antimicrobial, antioxidant and anticonvulsant potential.
Results: Prominent anti-protease potential was shown by C7 and C3 compounds and the order of activity was C7 > C3 > C5 > C2 > C6 > C4 > C2 > C1 (p < 0.05). The anticonvulsant activity of C7 and C5 was comparable with the standard drug; C3, C4, C6 and C8 had mild activity while C1 and C4 showed the least activity. The synthesized compounds exhibited significant (p < 0.05) antioxidant potential (rank order: C3 > C4 > C5 > C7 > C8 > C6 > C1 > C2) and antimicrobial activity against S. aureus and B. bronchiseptica (rank order: C5 > C2 > C8 > C1 > C4 > C3 > C7).
Conclusion: Synthesized derivatives retained their potential for anticonvulsant and antitrypsin activity, unlike their mother moiety, i.e., carbamazepine. The additional antibacterial activity effectively treats neurological disorders associated with bacterial infections.

Keywords: Carbamazepine, Epilepsy, Antibacterial, Proteases

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates